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Introduction

• Lithography of arbitrary structures down to nanometre scale has
applications in semiconductor industry, quantum electronics,
nanophotonics and others.

• Recently proposed method: sending metastable He through a holography
masks [1]

• However, these first calculations used a simple scalar wave approach,
which did not take into account the dispersion force interaction between
the atoms and the mask material

• We address this issue and illustrate the impact to the proposed method

Matter-wave lithography

Figure 1: Sketch of the experimental setup for lithography with matter waves. The incoming
beam, initialised at the source, is diffracted at a mask and creates a target pattern on the
screen. Picture taken from Ref. [1].

• Lithography: Experimental technique to create nano-structured patterns

• State of the art: EUV 14 nm energy (E = ℏω) ≈ 80 eV
• Matter waves:
• proposed resolution < 1 nm
• transferred energy (E = mv2/2) ≈ O(meV)
• But: Matter waves interact with dielectric objects (mask)

Macroscopic QED

• Ground state of the electromagnetic field: ⟨Ê⟩ = 0, but ⟨Ê2⟩ ̸= 0
→ vacuum fluctuations

• Energy shift due to second order perturbation of field-matter interaction

• Field quantisation: Ê(r) =
∞∫
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Casimir–Polder interactions

ε(ω), µ(ω)• Consideration: neutral particle α near
dielectric object ε

• In presence of electric field:
Induced dipole d = α · E and
Displacement fields D = ε · E
leading to Coulomb forces

• Casimir–Polder potential [2]
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]
• He atoms and SiNx membrane [3]

UCP,app(r) = −
9C3

π

∫
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|s − r |6

with the volume element d3s covering the membrane

• Impact of CP forces on interference pattern: transmission function

t(ϱ) = Θ[ϱ − (R − ∆R)] eiφ(ϱ)

with: Pore reduction ∆R, Phase shift φ(ϱ)

Results for the pore reduction
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(a) Deflection of particles bypassing a pore,

transmitted trajectories (black), absorbed

particles (red).
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(b) Pore reduction for metastable He and silicon nitride

membranes of different thicknesses (colour lines) and

pore radii: 25 nm (a), 10 nm (b) and 5 nm (c).

Figure 2: Results of the pore reduction calculations

• Estimated via Newtons equation of motion mr̈ = −∇U(r) with the
initial condition ϱ(0) = R − ∆R and finale point ϱ(τ ) = R

Results of the phase and impact on interference pattern

• Phase shift (integration along the particle’s trajectories)

φ(ϱ) = −
1

ℏ

∫
U [r(t)] dt

• In eikonal approximation [straight lines z = vzt = ht/(mλdB)] [3]

φ(ϱ) = −
mλdB
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with λ = ϱ/R and the elliptic integrals K(x)and E(x)
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Figure 3: Impact of pore reduction and phase shift onto the diffraction at a hole.

• Lower transmittance rate

• Stronger population of higher diffraction orders

• Stronger diffraction of higher diffraction orders
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